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SDA2. Modeling Trans-ionospheric Radio Signal Propagation

Context

* The need for modeling radio signal propagation through the ionosphere
remains high and is becoming more challenging due to new requirements
for accuracy and rapid availability.

* Further investigation into the ionosphere's complexity and dynamics
requires unprecedented detail to evaluate plasma irregularity effects.

* Modeling signal propagation is extremely complex and demands high
computational performance, especially when the ionosphere is
considered as a anisotropic, inhomogeneous plasma without
simplifications (or neglecting the Earth magnetic field).



SDA2. Modeling Trans-ionospheric Radio Signal Propagation

Context
* lonospheric medium characterization : IRTAM / NeQuick / IR

Assimilative IRTAM 3D (IRI-based B
Real-Time Assimilative Model).
[Galkin et al., 2022]

uses real-time measurement |
feeds from GIRO (Global i T g #
lonosphere Radio Observatory) :

’’’’’’’’’’

Note : A python version pylRTAM
exists available on GitHub
[Forsythe et al., 2024]

igure: lllustration of IR
using the GAMBIT tool.


https://giro.uml.edu/

SDA2. Modeling Trans-ionospheric Radio Signal Propagation

* Propagation modeling : Haselgrove equation resolution model

* Basic principle: Hamiltonian formulation of the wave . %m [(3)2 (k2 4+ K2 + 12) — 2
equation -> coupled equation systems giving the @
trajectory and wave vector of the wave at each point
of the trajectory. ( dr _ 1dH dH

P~ cakdw
dd 1 dH dH

 Initial parameters: frequency, azimuth, elevation -> aP- rcdk,’ @

require a search method to reach the receiver. dp 1 dH /dH
dP rcsin(8) dk, " dw

-

* Numerical resolution methods: Runge-Kutta-4 or y Je. 1dH di 40 ”
r — o - o
Runge-Kutta-Dormand-Prince to better control the 77 o qp T e gp ke sin(@) 75
integration error. dkg _1(1dH dH  dr de
< ap —r\cas dw Fogp T Reros®)gp
Limitation: A | iation of the ionosph Ak _ 1 (”H/dH kp sin(8) 2 — &, cos(0) da)
e Limitation: Assume a slow variation of the ionosphere = — — — k,sin(8) = — k7 cos(8) —
| ap rsin(@) \cdo "’ dw dP dP

-> unsuitable for studying short-lived phenomena such
as bubbles.



SDA2. Modeling Trans-ionospheric Radio Signal Propagation

Probability of passage of a ray
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SDA2. Modeling Trans-ionospheric Radio Signal Propagation

* Propagation modeling : MQP model (Multi Quasi Parabolic)

* Basic principle: Description of vertical ionospheric
density profile by segments of quasi-parabola. Then, f(r)? = fpzl. 1¥F >
analytic formulations available to compute the ray Ymi
trajectory (i.e. group distance).

(r — Tmi)z rbzi
'r‘z

MQP modeling — 5 layers

n
[}
o

 Initial parameters: frequency, azimuth, elevation ->
require a search method to reach the receiver.
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* Limitations:
e Approximation of electron density profile by MQP
* No variability of the profile vs distance, nor lateral
dimension F1 layer
) ] ] . E layer
* Assumes approximation of the refractive index
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SDA2. Modeling Trans-ionospheric Radio Signal Propagation

* Propagation modeling : MQP model (Multi Quasi Parabolic)
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This service uses a spherically stratified Composite-Q DP is
matched to the Assimilative IRI profile at the midpoint,
calculated using near-real-time GIRO data.




SDA2. Modeling Trans-ionospheric Radio Signal Propagation

o Review of Scientific models underpinning SDA2 (regarding their operational capability)
1. LIMPID-HF 3D raytracer with quiet-time background ionosphere modeled by NeQuick or IR,

lonosphere modeled by NeQuick or IRI
resolution of Haselgrove equations (3D)




SDA2. Modeling Trans-ionospheric Radio Signal Propagation

o Review of Scientific models underpinning SDA2 (regarding their operational capability)
1. LIMPID-HF 3D raytracer with quiet-time background ionosphere modeled by NeQuick or IR,
2.RayTRIX CQP (Composite Quasi-Parabolic ), extended to 2 hops

RayTRIX Synth CQP, MIDPT 2024.09.24 (268) 17:00:00
00
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1650

Simplified electron density profile and propagation
Based on IRTAM background ionosphere
IRl is also possible
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SDA2. Modeling Trans-ionospheric Radio Signal Propagation

o Review of Scientific models underpinning SDA2 (regarding their operational capability)
1. LIMPID-HF 3D raytracer with quiet-time background ionosphere modeled by NeQuick or IR,
2.RayTRIX CQP (Composite Quasi-Parabolic ), extended to 2 hops

3.HR2006 Numerical 3D raytracer (Parallelized and rewritten in GPU) with IRTAM background
ionosphere

Eastward
Azimuth=30"

IRI-like profile formalism for background ionosphere
IRTAM is possible
Overlaying TIDs is also possible
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SDA2. Modeling Trans-ionospheric Radio Signal Propagation

o Review of Scientific models underpinning SDA2 (regarding their operational capability)
1. LIMPID-HF 3D raytracer with quiet-time background ionosphere modeled by NeQuick or IR,
2.RayTRIX CQP (Composite Quasi-Parabolic ), extended to 2 hops

3.HR2006 Numerical 3D raytracer (Parallelized and rewritten in GPU) with IRTAM background
ionosphere

Outputs: synthetized Doppler skymaps and oblique ionograms

o Tests to verify the results:

v’ Validations : (1) vs (2) vs (3) on quiet-time background ionosphere (and no Earth magnetic field,
neither collision profile), with 1 or 2 hops

v’ Validations : (1) vs (2) vs (3) on quiet-time background ionosphere, with Earth magnetic field
v (1) (2) (3) : Cross-validation versus D2D oblique sounding data
(2) and (3) should demonstrate improved performance with DISPEC high-level data products



Thank you for your attention!

WEB: https://dispec.eu
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https://dispec.eu/
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